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Abstract  

Background 
The Gene Normalization (GN) task refers to the identification and linking of gene 

mentions in free text to standard gene database identifiers, an important task 

motivated by many real-world uses such as assisting literature curation for model 

organism databases. Here we report the GN challenge in BioCreative III where 

participating teams are asked to return a ranked list of gene ids of full-text articles. 

For training, we prepared 32 fully annotated articles and 500 partially annotated 

articles. A total of 507 articles were selected as the test set. We developed an EM 

algorithm approach for selecting 50 articles from the test set for obtaining gold-

standard human annotations and used the same algorithm for inferring ground truth 

over the whole set of 507 articles based on team submissions. We report team 

performance by a newly proposed metric for measuring retrieval efficacy called 

Threshold Average Precision (TAP-k).    

Results 
We received a total of 37 runs from 14 different teams for the BioCreative III GN 

task. When evaluated using the gold-standard annotations of the 50 articles, the 

highest TAP-k scores are 0.3248 (k=5), 0.3469 (k=10), and 0.3466 (k=20), 

respectively. Higher TAP-k scores of 0.4581 (k=5, 10) and 0.4684 (k=20) are 

observed when evaluated using the inferred ground truth over the full test set.  

Conclusions 
Overall team results show that this year’s GN task is more challenging than past 

events, which is likely due to the complexity of full text as well as species 

identification. By comparing team rankings with different evaluation data (gold 
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standard vs. inferred ground truth), we demonstrate that our approach succeeds in 

inferring ground truth adequate for effectively detecting good team performance.   

Background  
The gene normalization (GN) task in BioCreative III is similar to past GN tasks in 

BioCreative I and II (1-3) in that the goal is to link genes or gene products mentioned 

in the literature to standard database identifiers. This task has been inspired partly by 

a pressing need to assist model organism database (MOD) literature curation efforts, 

which typically involve identifying and normalizing genes being studied in an article. 

For instance, Mouse Genome Informatics (MGI) recently reported their search and 

evaluation of potential automatic tools for accelerating this gene finding process (4).    

Specifically, this year’s GN task is to have participating systems return a list of gene 

database (Entrez Gene in this case) identifiers for a given article. There are two 

differences from past BioCreative GN challenges: 

 Instead of using abstracts, full-length articles are provided. 

 Instead of being species-specific, no species information is provided. 

Both changes make this  year’s challenge event closer to the real literature curation 

task in MODs where humans are given full text articles without prior knowledge of 

organism information in the article.  

Two additional new aspects of this year’s GN task are the proposed evaluation metrics 

and the use of an EM algorithm for inferring ground truth based on team submissions. 

As many more genes are found in full text than in abstracts, returning genes by 

predicted confidence is preferred to a random order, as the former is more desirable in 

applications. Metrics used in past GN tasks such as Precision, Recall, and F-measure 

do not take ranking into consideration. Thus, we propose to use a new measure called 
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Threshold Average Precision (TAP-k), which is specifically designed for the 

measurement of retrieval efficacy in bioinformatics (13).  

Finally, unlike in previous GN tasks where abstracts in the test set were completely 

hand annotated, the cost of manual curation on full text prevented us from obtaining 

human annotations for all 507 articles in the test set. Thus we resort to using team 

submissions for inferring ground truth. That is, given a labeling task and M  

independent labeling sources, it is possible to use these multiple sources to make 

estimates of the true labels which are generally more accurate than the labels from any 

single source alone.  Perhaps the simplest approach to this is to use majority voting 

(5-7). On the other hand a number of methods have been developed using latent 

variables to represent in some way the quality of the labeling sources and based on the 

EM algorithm (8-12). There is evidence that such an approach can perform better than 

majority voting (8,11). We have chosen the most direct and transparent of the EM 

approaches (11) to apply to the GN task where we have multiple submissions as the 

multiple labeling sources. As far as we are aware this is the first attempt to base an 

evaluation of the performance of multiple computer algorithms on an EM algorithm 

for multiple independent data sources.  

Methods 
Data Preparation 
For the purpose of obtaining full text articles in uniform formats and using them as a 

source for text analytics, all the articles selected for this task are published either by 

BioMed Central (BMC) or by Public Library of Science (PLoS), two PubMed Central 

(PMC) participating Open Access publishers. As a result, the text of each article was 

readily made available in both high-quality XML and PDF from PMC. 
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Participants were given a collection of training data to work with so that they could 

adjust their systems to optimal performance. The training set includes two sets of 

annotated full-length articles:  

 32 fully annotated articles by a group of invited professional MOD curators 

and by a group of bioinformaticians from the NCBI. Both groups were trained 

with detailed annotation guidelines (available as Appendix A) and a small 

number of example articles before producing gold-standard annotations. For 

each article in this set, a list of Entrez Gene ids is provided.  

 A large number (500) of partially annotated articles. That is, not all genes that 

are mentioned in an article are annotated, but only the most important ones 

that within the scope of curation are annotated by human indexers at the 

National Library of Medicine (NLM). It is noted that most of the annotated 

genes are taken from the abstracts, though this is not 100%. This does not 

necessarily mean that the remainder of the text is useless. Presumably the full 

text can help to decide which genes are most important in the paper and 

determine the species to improve the prediction of the gene identifier. 

For evaluating participating systems, we prepared a set of 507 articles as the test set. 

These articles were recently published and did not yet have any curated gene 

annotations. Due to the cost of manual curation, the same groups of curators were 

asked to produce human annotations only for a subset of 50 articles selected by the 

algorithm described below. 

E M algorithm 

In this scheme we assume there are M  labeling sources and associate with the ith 

labeling source two numbers, the sensitivity ias  and the specificity ibs .  For the GN 

task we consider all the gene ids returned by the M  sources as objects to be labeled. 
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Any given source produces a label for any such gene id which is the label “true” if the 

source returned that gene id or “false” if the source did not return that gene id. Then 

the sensitivity ias  is the probability that the ith source labels a correct gene id as true 

and the specificity ibs  is the probability that it labels an incorrect gene id as false.  

Assume there are N  gene ids which require labeling. Then the model assumes a 

probability distribution   1

N
j j

p


 where jp  is the probability that the jth gene id is 

correct. To begin the algorithm we initialize each jp  to be equal to the fraction of the 

M  labels that are true for that gene id.  The maximization step redefines the 

  1, M
i i ias bs


 in terms of the current   1

N
j j

p


 by 

 
   
   

1 1

1 1

1 / 2

1 (1 )(1 ) / 2 (1 )

N N
i ij j jj j

N N
i ij j jj j

as p p

bs p p





 

 

  

     

 
 

 (0.1) 

where we have used typical Laplace smoothing and define ij  to be 1 if the ith source 

labels the jth gene id as true and 0 otherwise.  The jp s are defined for the subsequent 

expectation step by 
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by Bayes’ theorem where for each j,  jpr  is the prior for jp . We initially took prj 

uniformly to be 0.5 and applied the algorithm to choose the 50 documents for hand 

labelling. Once we knew the correct annotations for the 50 document gold standard 

set we observed that only about 1% of gene ids returned by systems were correct. We 

subsequently have taken jpr  equal to 0.01 for all j in applying the algorithm to 

determine ground truth.  
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As mentioned above, our first use of this model was to find 50 documents among the 

507 test documents which had the most variability in their labeling by different 

sources. For this purpose one submission from each team involved in the GN task was 

randomly selected and these submission were the 14 sources for application of the 

algorithm. When the algorithm was run to convergence we computed the entropy for 

the jth gene id by the formula 

 log (1 ) log(1 )j j j j jH p p p p      (0.3) 

Each document was scored by the sum of the entropies for all the gene ids coming 

from that document. Thus a document score is a function of how many gene ids are 

reported for that document and how variably the gene ids are reported by the different 

sources. This sampling, running the model and scoring the documents, was repeated 

100 times and the top 50 documents varied only a small amount from run to run. We 

chose the 50 documents with the highest average scores over the 100 trials for hand 

annotation to provide the gold standard evaluation.  

The second use of the model was to apply it to the best submission from each team. 

The choice of the best submission itself is based on the gold standard, but we made no 

further use of the gold standard. From the converged model using these sources we 

obtained a set of probabilities   1

N
j j

p


 and we accepted as correct all those gene ids 

for which 0.5jp   and considered all other gene ids to be incorrect. This labeling we 

refer to as the silver standard. We used it to evaluate all submissions on the whole set 

of 507 documents. A comparison of results as computed with the gold standard and 

the silver standard is given in Table 3.  
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Evaluation Metrics 
We propose to use a new metric, Threshold Average Precision (TAP-k), for 

evaluating team performance. In short, TAP is Mean Average Precision (MAP) with a 

variable cutoff and terminal cutoff penalty. We refer interested readers to the original 

publication (13) and Appendix B for detailed description of the TAP-k metric. In our 

evaluation, we used three values of k: 5, 10 and 20.  

Results 
GN Annotation Data 
As shown in Table 1, the average numbers (mean and median) of annotated genes per 

article in Set 1 are significantly lower than the ones in Set 2, while remaining 

relatively close to its counterparts in Set 3. This comparison suggests that the 50 

selected articles are not representative of the articles in the training set. Instead, the 

entire test set seems akin to the training set in this respect. 

Table 1: Statistics of annotated gene ids in the different data sets. 

Set Description Min Max Mean Median St.dev. 

1 Training Set (32 articles) 4 147 19 14 24 
2 Test Set (50 articles – gold standard) 0 375 33 19 63 
3 Test Set (507 articles – silver standard) 0 375 18 12 27 

 

Table 2 shows that there are many different species involved in this year’s GN task, 

which suggests that species identification and disambiguation may be critical in the 

process of finding the correct gene ids. We also show that the distributions of species 

among the genes in the three data sets look largely different. This indeed reflects the 

method of selecting the articles for training and evaluation: with some prior 

knowledge of a papers’ species information, we were able to select the 32 articles as 

the training set to match the domain expertise of those invited professional MOD 

curators in order to obtain best possible human annotations. On the other hand, the 
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articles in the test set were selected rather randomly as none was annotated prior to 

the evaluation.     

 Table 2: Statistics of species distribution in the different data sets.  

# T raining Set (32 articles) T est Set (50 articles) T est Set (507 articles)  
1 S. cereviaiae (27%) Enterobacter sp. 638 (23%) H. Sapiens (42%) 
2 H. sapiens (20%) M. musculus (14%) M. musulus (24%) 
3 M. musculus (12%) H. Sapiens (11%) D. melanogaster (6%) 
4 D. melanogaster (10%) S. pneumoniae TIGR4 (9%) S. cerevisiae S228c (6%) 
5 D. rerio (7%) S. scrofa (5%) Enterobacter sp. 638 (4%) 
6 A. thaliana (5%) M. oryzae 70-15 (4%) R. norvegicus (4%) 
7 C. elegans (3%) D. melanogaster (4%) A. thaliana (2%) 
8 X. laevis (3%) R. norvegicus (3%) C. elegans (2%) 
9 R. norvegicus (2%) S. cerevisiae S228c(2%) S. pneumoniae TIGR4 (2%) 

10 G. gallus (2%) E. histolytica HM-1 (2%) S. scrofa (1%) 
11+ Other 18 species (9%) Other 65 species (23%) Other 91 species (7%) 
 

In addition to recognizing various species in free text, participating systems also 

needed to properly link them to the corresponding gene mentions in the articles. As 

shown in Figure 1 most articles (over 70%) in our data sets contain more than one 

species mention. In fact, it is not uncommon to see 5 or more species in an article. In 

cases where more than one species is found in an article, it can be challenging for 

systems to associate a gene mention with its correct species.  

F igure 1: Percentage of articles annotated with different numbers of species in 
various data sets. Training (32) refers to the human annotations on the 32 articles in 
the training set. Test (50) and Test (507) refer to the gold standard and silver standard 
annotations on the 50 and 507 articles in the test set, respectively. 
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Team Results 

Each team was allowed to submit up to 3 runs. Overall, we received a total of 37 runs 

from 14 teams. One team withdrew their late submission (one run) before the results 

were returned to the teams. Thus, per their request we do not report their system 

performance in the tables below. Nevertheless we included their withdrawn run when 

selecting 50 articles and computing the silver standard by our EM algorithm, as we 

believe more team submission data are preferable in this case.   

We assessed each submitted run by comparing it to the gold and silver standard, 

respectively, and report their corresponding TAP scores (k = 5, 10, and 20) in Table 3. 

As highlighted in the table, the two runs from team 83 (T83_R1 and T83_R3) 

achieved highest TAP scores in almost all cases except when evaluated on the silver 

standard with k = 20 where the third run from Team 98 (T98_R3) was the best. 

However, we did not find a statistically significant difference between the results of 

the two teams (T83 and T98) when comparing their respective best runs (with 

different values of k) based on the Wilcoxon signed rank test.   

Table 3: Team evaluation results on the 50 and 507 articles using gold and silver 
standard annotations, respectively. Results are sorted by team numbers.  
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Team_Runs 

Using gold standard 
(50 selected articles) 

Using silver standard 
(All 507 articles) 

TAP 
(K=5) 

TAP 
K=10 

TAP 
(K=20) 

TAP 
(K = 5) 

TAP 
(K = 10) 

TAP 
(K = 20) 

T63_R1  0.0337  0.0484  0.0718  0.1567  0.1939  0.1954 
T63_R2  0.0296  0.0454  0.0638  0.1368  0.1855  0.1942 
T65_R1  0.0628  0.0958  0.1017  0.1487  0.1754  0.1938 
T65_R2  0.0891  0.1073  0.1156  0.1533  0.1817  0.2024 
T68_R1  0.1568  0.1817  0.1987  0.3398  0.3551  0.3516 
T68_R2  0.1255  0.1431  0.1740  0.3257  0.3410  0.3375 
T70_R1  0.0566  0.0566  0.0566  0.1146  0.1146  0.1146 
T70_R2  0.0622  0.0622  0.0622  0.1243  0.1243  0.1243 
T70_R3  0.0718  0.0718  0.0718  0.1512  0.1512  0.1512 
T74_R1  0.2099  0.2447  0.2447  0.4518  0.4518  0.4518 
T74_R2  0.2045  0.2417  0.2417  0.4514  0.4514  0.4514 
T74_R3  0.2061  0.2432  0.2432  0.4555  0.4555  0.4555 
T78_R1  0.0577  0.0726  0.1106  0.1245  0.1527  0.1877 
T78_R2  0.0829  0.1161  0.1662  0.2495  0.2655  0.2655 
T78_R3  0.0830  0.1091  0.1387  0.2219  0.2645  0.2762 
T80_R1  0.1072  0.1556  0.1622  0.3983  0.3983  0.3983 
T80_R2  0.0372  0.0507  0.0578  0.2165  0.2165  0.2165 
T80_R3  0.0324  0.0432  0.0516  0.2224  0.2288  0.2288 
T83_R1  0.3184  0.3469  0.3466  0.4581  0.4581  0.4581 
T83_R2  0.3147  0.3366  0.3366  0.4293  0.4293  0.4293 
T83_R3  0.3228  0.3445  0.3445  0.4303  0.4303  0.4303 
T89_R1  0.1197  0.1197  0.1351  0.2681  0.2989  0.2989 
T89_R2  0.1351  0.1521  0.1620  0.2624  0.2950  0.2950 
T89_R3  0.1275  0.1522  0.1522  0.2873  0.2873  0.2873 
T93_R1  0.1599  0.1842  0.2010  0.3916  0.3916  0.3916 
T93_R2  0.1517  0.1804  0.2000  0.3602  0.3720  0.3720 
T93_R3  0.1611  0.1856  0.2032  0.3946  0.3946  0.3946 
T97_R1  0.0709  0.092  0.1001  0.1369  0.1620  0.1859 
T97_R2  0.0630  0.0849  0.0945  0.1304  0.1563  0.1770 
T97_R3  0.0709  0.092  0.1001  0.1369  0.1620  0.1859 
T98_R1  0.2805  0.2971  0.3064  0.3720  0.3802  0.3779 
T98_R2  0.2850  0.3033  0.3044  0.3682  0.3775  0.3767 
T98_R3  0.2973  0.3125  0.3248  0.4086  0.4511  0.4648 
T101_R1  0.1849  0.2235  0.2331  0.4128  0.4128  0.4128 
T101_R2  0.1649  0.2102  0.2365  0.4097  0.4224  0.4224 
T101_R3  0.1773  0.2096  0.2374  0.4351  0.4351  0.4351 

 

To assess the quality of the silver standard, we show in Table 4 the results of team 

submissions against the silver standard on the 50 selected articles. Although the two 

best runs from Team 83 in Table 3 are still among the ones with the highest TAP 

scores, they no longer are the best runs. Instead, the top positions are replaced by 

T74_R3 (for k=5) and T98_R3 (for k=10 and 20), respectively.  
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Table 4: Team evaluation results on the 50 articles using the sliver standard 
annotations. Results are sorted by team numbers.  

Team_Run  TAP (K=5)  TAP (K=10)  TAP (K=20) 
T63_R1  0.0515  0.1045  0.142 
T63_R2  0.0455  0.0978  0.1335 
T65_R1  0.0996  0.1259  0.1473 
T65_R2  0.109  0.1317  0.1522 
T68_R1  0.2238  0.2719  0.3152 
T68_R2  0.2098  0.2917  0.2917 
T70_R1  0.053  0.053  0.053 
T70_R2  0.0566  0.0566  0.0566 
T70_R3  0.096  0.096  0.096 
T74_R1  0.3677  0.3677  0.3677 
T74_R2  0.3713  0.3713  0.3713 
T74_R3  0.3747  0.3747  0.3747 
T78_R1  0.0589  0.0793  0.1139 
T78_R2  0.1048  0.1548  0.2114 
T78_R3  0.0972  0.1394  0.1949 
T80_R1  0.2464  0.2719  0.2719 
T80_R2  0.0663  0.1107  0.1177 
T80_R3  0.0749  0.1231  0.1291 
T83_R1  0.3498  0.3531  0.3531 
T83_R2  0.3222  0.3222  0.3222 
T83_R3  0.3313  0.3313  0.3313 
T89_R1  0.1714  0.217  0.217 
T89_R2  0.2141  0.2581  0.2949 
T89_R3  0.2054  0.2054  0.2054 
T93_R1  0.2518  0.2979  0.2979 
T93_R2  0.2011  0.2514  0.2854 
T93_R3  0.2487  0.293  0.293 
T97_R1  0.1066  0.1307  0.149 
T97_R2  0.09  0.1126  0.1323 
T97_R3  0.1066  0.1307  0.149 
T98_R1  0.3218  0.3388  0.3494 
T98_R2  0.3217  0.3391  0.3496 
T98_R3  0.3576  0.3953  0.4499 
T101_R1  0.3504  0.374  0.374 
T101_R2  0.3068  0.379  0.3976 
T101_R3  0.3077  0.3942  0.3942 

 

Discussion  
Team Results and Quality of Silver Standard 

Although we are unable to directly compare this year’s GN team results against the 

ones in previous GN challenges due to different evaluation metrics, results in Table 3 
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led us to believe that this year’s GN task is more challenging, potentially due to the 

complexity of full text processing and species identification (14,15).  

Using the silver standard allowed us to assess team submissions on the entire set of 

test articles without having human annotations for all articles. As can be seen from 

results in Tables 3 and 4, TAP scores are consistently higher when evaluated on the 

silver standard compared to the gold standard. Furthermore, individual team rankings 

may be affected. For instance, as mentioned earlier the best performing run was 

T83_R3 using gold standard but T74_R3 using silver standard. Nevertheless, it is 

evident that relative rankings tend to be largely preserved in this comparison. For 

instance, teams 83, 74, 98 and 101 consistently remain as the top tier group in all 

evaluations. This provides some justification for the silver standard and suggests that 

this approach to evaluation has some merit. 

As just noted, TAP scores in Table 3 show that overall team performance is lower on 

the 50 articles than on the entire set of 507 articles. The reasons for this are two fold. 

First, the 50 articles are the most difficult ones for gene normalization (as shown by  

comparing the silver results for the 50 and the 507) and this supports our rationale for 

their choice. Second, by comparing the gold and silver results for the 50 in Tables 3 

and 4, we can see that team results are always higher when evaluated using the silver 

standard. Taken together, this suggests that the true TAP scores on the entire test set 

should be slightly lower than what is currently reported using the silver standard in 

Table 3. 

Team Methods 

Each team was required to submit a system description before receiving the gold 

standard annotations on the 50 articles and their scores. Based on reading those 
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submitted descriptions, we found the general framework for the gene normalization 

task comprises the following major steps:  

1) Identifying gene mentions 

2) Identifying species information and linking such information to gene mentions 

3) Retrieving a list of candidate gene ids for a given gene mention 

4) Selecting gene ids through disambiguation. 

Conclusions  
We have successfully organized a community-wide challenge event for the gene 

normalization task. There were a total of 37 submissions by 14 different teams from 

Asia, Europe, and North America. The highest TAP-k scores obtained on the gold-

standard annotations of the 50 test articles are 0.3248 (k=5), 0.3469 (k=10), and 

0.3466 (k=20), respectively. In addition, TAP-k scores of 0.4581 (k=5, 10) and 

0.4684 (k=20) are observed when using the silver standard of the 507 test articles.  

In comparison with past BioCreative GN tasks, this year’s task bears more 

resemblance to real-world tasks in which curators are given full text without knowing 

species information. As a consequence, this year’s task has proved more difficult than 

the ones in the past, which is evident from the overall lower team performance.  

Finally, we believe the TAP-k metric and EM algorithm proved to be adequate for 

evaluating retrieval efficacy and for inferring ground truth based on team 

submissions. In particular, the proposed pooling method allowed us to effectively 

detect good team performance without having to relying on human annotations.  

Future work should include conducting a more detailed analysis of various techniques 

and tools used by different participating teams, as this may provide valuable direction 

for future research on the GN problem. Also, we plan to combine results from 

different teams as an ensemble system to test maximal aggregate performance, as in 
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various previous studies (1,16,17). Finally, we would like to investigate how systems 

developed for the GN task may be used in real-world applications.  

Additional material 

Additional file 1: GN annotation guidelines 

Additional file 2: Introduction to TAP-k  

Acknowledgements  
This research is supported by the Intramural Research Program of the NIH, National 

Library of Medicine. The authors would like to thank all the annotators who produced 

the gold-standard annotations.  

References 
1. Morgan, A.A., Lu, Z., Wang, X., et al. (2008) Overview of BioCreative II 

gene normalization. Genome Biol, 9 Suppl 2, S3. 
2. Hirschman, L., Colosimo, M., Morgan, A., Yeh, A. (2005) Overview of 

BioCreAtIvE task 1B: normalized gene lists. BMC Bioinformatics, 6 Suppl 1, 
S11. 

3. Colosimo, M.E., Morgan, A.A., Yeh, A.S., Colombe, J.B., Hirschman, L. 
(2005) Data preparation and interannotator agreement: BioCreAtIvE task 1B. 
BMC Bioinformatics, 6 Suppl 1, S12. 

4. Dowell, K.G., McAndrews-Hill, M.S., Hill, D.P., Drabkin, H.J., Blake, J.A. 
(2009) Integrating text mining into the MGI biocuration workflow. Database 
(Oxford), 2009, bap019. 

5. Snow, R., O'Connor, B., Jurafsky, D., Ng, A.Y. (2008) Cheap and fast---but is 
it good?: evaluating non-expert annotations for natural language tasks.  
Proceedings of the Conference on Empirical Methods in Natural Language 
Processing. Association for Computational Linguistics, Honolulu, Hawaii. 

6. Sheng, V.S., Provost, F., Ipeirotis, P.G. (2008) Get another label? improving 
data quality and data mining using multiple, noisy labelers.  Proceeding of the 
14th ACM SIGKDD international conference on Knowledge discovery and 
data mining. ACM, Las Vegas, Nevada, USA. 

7. Donmez, P., Carbonell, J.G., Schneider, J. (2009) Efficiently learning the 
accuracy of labeling sources for selective sampling.  Proceedings of the 15th 
ACM SIGKDD international conference on Knowledge discovery and data 
mining. ACM, Paris, France. 

8. Whitechill, J., Ruvolo, P., Wu, T., Bergsma, J., Movellan, J. (2009) Whose 
vote should count more: optimal integration of labels from labelers of 
unknown expertise. Advances in Neural Information Processing Systems, 
2035-3043. 

9. Welinder, P., Perona, P. (2010) Online crowdsourcing: rating annotators and 
obtaining cost-effective labels.  Workshop on Advancing Computer Vision 
with Humans in the Loop at CVPR'10. 



 - 16 - 

10. Smyth, P., Fayyad, U., Burl, M., Perona, P., Baldi, P. (1995) Inferring ground 
truth from subjective labelling of venus images. Advances in Neural 
Information Processing Systems, 7. 

11. Raykar, V.C., Yu, S., Zhao, L.H., et al. (2010) Learning From Crowds. 
Journal of Machine Learning Research, 11, 1297-1322. 

12. Dawid, A.P., Skene, A.M. (1979) Maximum Likelihood Estimation of 
Observer Error-Rates Using the EM Algorithm. Journal of the Royal 
Statistical Society. Series C (Applied Statistics), 28, 20-28. 

13. Carroll, H.D., Kann, M.G., Sheetlin, S.L., Spouge, J.L. (2010) Threshold 
Average Precision (TAP-k): a measure of retrieval designed for 
bioinformatics. Bioinformatics, 26, 1708-1713. 

14. Kappeler, T., Kaljurand, K., Rinaldi, F. (2009) TX task: automatic detection of 
focus organisms in biomedical publications.  Proceedings of the Workshop on 
BioNLP. Association for Computational Linguistics, Boulder, Colorado. 

15. Wang, X., Tsujii, J., Ananiadou, S. (2010) Disambiguating the species of 
biomedical named entities using natural language parsers. Bioinformatics, 26, 
661-7. 

16. Leitner, F., Mardis, S.A., Krallinger, M., Cesareni, G., Hirschman, L.A., 
Valencia, A. (2010) An Overview of BioCreative II.5. IEEE/ACM Trans 
Comput Biol Bioinform, 7, 385-399. 

17. Smith, L., Tanabe, L.K., Ando, R.J., et al. (2008) Overview of BioCreative II 
gene mention recognition. Genome Biol, 9 Suppl 2, S2. 

 
 



BioCreative GN Task 2010 

Gene/Protein Annotation Guidelines 

What to annotate and normalize:  

1. Find gene/protein mentions in the full-length article including figure and 

table legends and map them to unique Entrez Gene identifiers 

(http://www.ncbi.nlm.nih.gov/gene/). 

2. Entrez Gene Ids are required. (UniProt Ids or Model Organism Database 

Ids are optional). 

3. Annotate all genes mentioned in the article including those genes 

mentioned in passing or only mentioned once in the article. However, there 

is no need to rank or group genes for this assignment. 

4. When there is no explicit mention of a gene’s organism of origin in 

surrounding text, try to use the article context to help determine its species. 

Annotate the gene only when the species information can be determined. 

Some helpful clues for determining species include details in the 

methods/materials section such as cell lines, organism-specific gene 

nomenclature conventions, etc. 

5. You may also use your domain knowledge for determining which organism 

a gene belongs to when no explicit species information is given in the text. 

If there is absolutely no clue about the species, or in situations where the 

species information is ambiguous (e.g. the authors use one gene as a 

representative of its homologs), do not annotate the gene.   

6. When cell lines from different species are used to study a gene, determine 

and use the gene’s species of origin instead of a cell lines’ species of origin 

for annotation.  



What NOT to annotate: !

"# Do not annotate references sections. But this section may be useful for species 

identification. However, do not go beyond reading reference titles. That is, 

don’t read the referenced articles. !

2. Do not use or annotate supplementary material or supporting information.  

3. Annotate target proteins but do not annotate antibodies/reagents that are used 

to study target proteins.  

4. Do not annotate the Methods/Materials section for genes/proteins. But this 

section may be useful for species identification. (Our reasoning is that the 

Methods/Materials section often contains information about reagents or 

antibodies that are themselves proteins but are not curatable objects; if 

curatable genes/proteins are mentioned in such a section, then they will almost 

certainly be mentioned elsewhere in the article).  

5. Do not annotate genes where no unique ids can be identified in Entrez Gene. 

For example, if you find a gene mention “x-tsk” in a paper and subsequently 

search it in Entrez Gene, you may be presented with two separate Entrez gene 

records (x-tsk-b1 & x-tsk-b2). In this case, if you can’t tell which specific gene 

is used in the paper based on your domain knowledge, do not annotate this 

gene. 

6. Do not annotate a protein complex (e.g. TFTC complex). But if its members 

are explicitly given (NFKB-IKB complex) they should be annotated. 

7. Do not annotate a protein family (e.g. cytokines; ring-h2 finger proteins) 

because no unique Entrez Gene id can be assigned to it.  

8. Do not annotate a gene/protein with only non-species taxonomic information 

(e.g. mammalian p53) for the same reason above.  

 



What is TAP-k? 

Here we refer to the measure defined by Carroll, H. D., Kann, M. G., Sheetlin, S. L., and 
Spouge, J. L., Threshold Average Precision (TAP-k): A Measure of Retrieval Designed for 
Bioinformatics, Bioinformatics Advanced Access published on May 26, 2010. 

The Threshold Average Precision (TAP-k) is MAP with a variable cutoff and terminal cutoff 
penalty.  

For a single query the average precision (AP) is computed by summing the precision at each rank 
that contains a true positive item and then dividing this sum by the number of positives for that 
query.  If the retrieval system assigns to each retrieved item a score and the retrieved items are 
ranked in decreasing order of score, then it may be useful to cut off the retrieval at some fixed 
score level x. We can compute the average precision with cutoff x (APCx). This is the sum of the 
precision at each rank with a true positive item and a score >=x, divided by the total number of 
positives for the query. Finally, suppose that y>x and further suppose there are no true positive 
items in the sum for APCx that are below y. Then APCy=APCx. But clearly it would make more 
sense to choose the cutoff y than the cutoff x. To distinguish between these two cases we define 
the average precision with cutoff x and terminal penalty (APCPx). Let Px be the precision at the 
last rank with score  >= x and let P be the total number of positives. Then define 
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x x
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APCPx is just the weighted average of APCx and Px with most of the weight applied to APCx, but 
Px supplying the terminal penalty. In our hypothetical case Py will be greater than Px so that 
APCPy is also greater than APCPx and the score rewards the better choice of cutoff or equally 
penalizes the poorer choice. Whereas MAP is the average of AP over all the queries, TAP-k is the 
average of APCPx over all the queries where x is chosen as the largest score that produces a 
median of k false positive retrievals over all the queries. The median is used here instead of the 
mean because it is more robust against noise and outliers.  

There are some practical considerations when applying TAP-k. First, retrieval systems must 
produce scores commensurate with their rankings and these scores must be interpretable across 
different queries. Since most systems generate their retrieval by scoring this should not make the 
task any more difficult than usual. On the other hand some kind of score normalization may be 
necessary for some systems, depending on how the scores are constructed. An ideal score would 
be a probability estimate that the retrieved item is a true positive, but a score need not be a 
probability estimate for good performance. The score that is reported simply has to have the 
same implications for relevance of the item regardless of the query, for the best performance. 
Another important issue is the length of the retrieved lists returned by a system.  If many of the 
retrieved lists are too short to have k false positives appear, then no cutoff score may produce a 



median number of k false positive retrievals for the set of queries. In that case we will take the 
cutoff score x to be the lowest score over all the retrieval lists for all the queries.  

 

Example 1. Data for five queries, Q1-Q5 are presented in the table. The numbers in parentheses 
following the query numbers are the number of  correct or relevant items for each query. This data 
was generated randomly based on the scores. Each score is the probability that the corresponding 
retrieved item would be relevant (relevance is shown by a 1 in the rel column for each query). The 
scores themselves are parts of  power series which are convenient for generating realistic scores. 
Retrieval is cut off  at 15 items for each query to keep the data easily manageable and as a 
consequence not all relevant items are necessarily retrieved.  

 Q1 (5) Q2 (5) Q3 (5) Q4 (3) Q5 (5) 
 rel score rel score rel score rel score rel score 
1 1 0.900 0 0.500 0 0.500 0 0.2 1 0.980 
2 1 0.738 0 0.475 1 0.475 0 0.187 0 0.788 
3 0 0.605 1 0.451 0 0.451 0 0.174 0 0.633 
4 1 0.496 0 0.429 0 0.429 0 0.163 1 0.509 
5 1 0.407 1 0.407 0 0.407 0 0.152 1 0.409 
6 0 0.334 0 0.387 0 0.387 0 0.142 0 0.329 
7 0 0.274 0 0.367 0 0.367 0 0.132 0 0.265 
8 0 0.224 0 0.349 1 0.349 0 0.123 0 0.213 
9 1 0.184 0 0.332 0 0.332 0 0.115 0 0.171 
10 0 0.151 1 0.315 1 0.315 0 0.107 1 0.138 
11 0 0.124 0 0.299 0 0.299 0 0.100 0 0.111 
12 0 0.101 0 0.284 0 0.284 0 0.094 0 0.089 
13 0 0.083 0 0.270 0 0.270 0 0.087 0 0.071 
14 0 0.068 0 0.257 0 0.257 0 0.082 0 0.057 
15 0 0.056 0 0.244 1 0.244 0 0.076 0 0.046 
Here the score cutoff  for TAP-5 is 0.213 and the values of  APCP5 are 0.675, 0.206, 0.264, 0, 0.413 and the 
average of  these numbers, TAP-5,  is 0.312. The blue background shows what parts of  the retrieval were 
included in the scoring (likewise for subsequent examples). 

Example 2. Example 1 output, but the system has limited its retrieval to the top 4 ranks for each 
query.  

 Q1 (5) Q2 (5) Q3 (5) Q4 (3) Q5 (5) 
 rel score rel score rel score rel score rel score 
1 1 0.900 0 0.500 0 0.500 0 0.2 1 0.980 
2 1 0.738 0 0.475 1 0.475 0 0.187 0 0.788 
3 0 0.605 1 0.451 0 0.451 0 0.174 0 0.633 
4 1 0.496 0 0.429 0 0.429 0 0.163 1 0.509 
5           
6           
7           
8           
9           
10           



11           
12           
13           
14           
15           
 

Here the cutoff  score is 0.163 (the lowest score possible) and the APCP5 values are 0.583, 0.097, 
0.125, 0, 0.333 and the average, TAP-5, of  these numbers is 0.228. Here the TAP-5 is lower than for 
example 1 because the system cut the retrieval off  prematurely and this decreased the recall and thus 
the TAP -5 score.  

 

Example 3.  Example 1 output again, but scores changed so they only reflect the rank and not the quality 
of  the retrieved material.  

 Q1 (5) Q2 (5) Q3 (5) Q4 (3) Q5 (5) 
 rel score rel score rel score rel score rel score 
1 1 0.9 0 0.9 0 0.9 0 0.9 1 0.9 
2 1 0.85 0 0.85 1 0.85 0 0.85 0 0.85 
3 0 0.8 1 0.8 0 0.8 0 0.8 0 0.8 
4 1 0.75 0 0.75 0 0.75 0 0.75 1 0.75 
5 1 0.7 1 0.7 0 0.7 0 0.7 1 0.7 
6 0 0.65 0 0.65 0 0.65 0 0.65 0 0.65 
7 0 0.6 0 0.6 0 0.6 0 0.6 0 0.6 
8 0 0.55 0 0.55 1 0.55 0 0.55 0 0.55 
9 1 0.5 0 0.5 0 0.5 0 0.5 0 0.5 
10 0 0.45 1 0.45 1 0.45 0 0.45 1 0.45 
11 0 0.4 0 0.4 0 0.4 0 0.4 0 0.4 
12 0 0.35 0 0.35 0 0.35 0 0.35 0 0.35 
13 0 0.3 0 0.3 0 0.3 0 0.3 0 0.3 
14 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 
15 0 0.2 0 0.2 1 0.2 0 0.2 0 0.2 
 

Here the scores no longer reflect quality and thus they do not give an accurate idea of  where to cut off  
retrieval to obtain maximal efficiency. As a result there is a drop in TAP-5 as compared with example 1. The 
cutoff  score is 0.6 and the APCP5 values are 0.687, 0.170, 0.107, 0, 0.421 and the average, TAP-5, is 
0.277.  

 


